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JOURNAL BEARING USING MULTIGRID TECHNIQUES
Claudia M. Woods
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
and
David E. Brewe
Propulsion Directorate
U.S. Army Aviation Research and Technology Activity - AVSCOM
Lewis Research Center
Cleveland, Ohio 44135
ABSTRACT
" Numerica) solution to a theoretical model of vapor cavitation in a
dynamically loaded journal bearing is developed, utilizing a multigrid
iterative technique. The method is compared with a noniterative approach in

terms of computational time and accuracy. The computational model is based on

the Elrod algorithm, a control volume approach to the Reynolds equation which

E-4222

mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting
for a moving cavitation boundary and conservation of mass at the boundary, it
also conserves mass within the cavitated region via a smeared mass or striated
flow extending to both surfaces in the film gap. The mixed nature of the
equations (parabolic in the full film zone and hyperbolic in the cavitated
zone) coupled with the dynamic aspects of the problem create interesting
difficulties for the present solution approach. Emphasis is placed on the
methods found to eliminate solution instabilities. Excellent resuits are
obtained for both accuracy and reduction of computational time.

NOMENCLATURE

AR aspect ratio of grid size, Ax/Az

ey dynamic eccentricity, m
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static eccentricity, m

forcing function on grid K
residual function on grid k
switching function

dimensionless film thickness, h/AR

film thickness, m
interpolation function from grid k to grid

grid indicator, k <« M

differencing scheme acting on a variable 6
length-to-diameter ratio

represents the tinest grid (highest number)
number of grid points axially

lineal mass flux, kg/m-$

number of grid points circumferentially
fluid pressure, N/ml

ambient pressure, N/mé

cavitation pressure, N/ml

radius of journal, m

time, s

sum of the surface velocities in x-directio

sum of the surface velocity vectors, m/s

k-1

n, m/s

wOork units
coordinate along circumference, m
coordinate normal tc v,z plane, m

axial coordinate, m

liquid bulk modulus, N/ml
{
|

angular position of minimum film, rad e
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4R radtal clearance, m

At time increment, s

Ax incremental spacing along circumference, m

Az axtal incremental spacing, m

£ eccentricity ratio

e fractional film content in cavitated zone
density ratio, p/pc, in full film zone

u dynamic viscosity, N-s/ml

o fluid density, kg/m3

oc fluid density within cavitated zone, kg/m3

¢ angular coordinate along circumference, degree

wg orbital angular velocity of journal center about a fixed point
relative to the housing center, rad/s

wg angular velocity of journal about its own center, rad/s

INTRODUCTION

The presence of vapor cavitation in dynamically loaded journal bearings
has become a topic of increasing importance. The use of increased loads and
more complicated loading cycles has resulted in an increase in the occurrence
of cavitation erosion problems. Examples of journal bearing applications
include main and crankshaft bearings in diesel engines and a variety of
bearings in the aircraft industry, Dowson and Taylor (1). Dynamic loading can
also lead to instabilities in the motion, such as whirling or whipping motion,
which may damage the bearing. In order to avoid bearing damage, it is useful
to predict the conditions under which the bearing will remain stable. The

determination of these stability maps requires a knowledge of the hydrodynamic

force terms.
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Previous static loading models, sucn as those using Swift-Stieber or
Gumbe) boundary conditions, assume a stationary cavitation bubble and are
inadequate for high speed, dynamic applications. Under dynamic loading,
changes in the local film thickness cause the bubble to grow, move downstream
from the minimum film position, and collapse, Brewe (2).

A film model which effectively deals with dynamic loading has been
formulated by Jakobsson-Floberg (3) and Olsson (4). Besides accounting for a
moving boundary, it also accommodates the flow within the cavitated region,
manifested via a smeared mass or liguid striations. These striations have been
observed in past experimental work. Because the theory assumes a zero pressure
gradient within the cavitated zone, this mass flow is a Couette flow. The JFO
theory accounts for both film rupture and film reformation, another advantage
cover previous methods. Unfortunately, the complexity of the 3FO theory makes
it difficult to apply (2). Elrod and Adams (5,6) have developed an algorithm
which automatically conforms to the JFO theory while being much simpler to
code. It utilizes a switching function which eliminates the pressure gradient
terms from the Reynold's lubrication equation at cavitated points.

A solution to the Elrod algorithm for a dynamically loaded problem has
been formulated by Brewe (2). This direct solution to the finite differenced
equations, i.e., no iterations required, utilizes an alternating direction
implicit (ADI) scheme for the time march. When compared to a nonconservative
film model (pseudo-Gumbel boundary conditions), as much as a 20-percent
difference in load capacity is observed. Brewe's results agree excellently
with the experimental work of Jakobsson and Floberg (3) for stationary
cavitation. The present experimental data on nonstationary cavitation is

limited, but Brewe's results compare reasonably well with the experimental
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work of Jacobson and Hamrock, (7,8). Unfortunately, Brewe's direct method
requires two to three times the computational work needed by the nonconservative
solution. The practical use of the Elrod algorithm in solving dynamic loading
problems in industry requires the development of a more efficient computer
solution.

[terative techniques are not considered among the fastest methods of
computer solution. However, newly developed techniques using multiple arid
sizes have shown that 1t is possible to greatly reduce computational time. It
is the purpose of this work to implement the multigrid technique developed by
Achi Brandt, (9,10), in the iterative solution of the Elrod algorithm under
dynamic loading conditions. As a point of reference, the multigrid method has
also recently been implemented in an EHD lubrication prcblem by Lubrecht,
ten Napel, and Bosma, (11).

The nature of the problem, {.e., the presence of discontinuous
coefficients in the cavitated region, poses interesting difficulties in the
application of the multigrid method. Therefore, one major objective is to find
methods of making the muitigrid technique as effective over the cavitated area
as it ts over areas of full fiim.

DESCRIPTION OF THE MODEL PROBLEM

The bearing motion consists of a journal undergoing a constant rpm as well
as a noncentered circular whirl inside of a 360° cylindrical bearing. The
journal center moves through a prescribed dynamic cycle, (Fig. 1) from a
minimum through a maximum eccentricity (see Table I for operating conditions).

The theoretical model assumes conditions of heavy loading, i.e., load
carrying capacity »>> surface tension forces in the liquid. An oil lubricant
is used for which the vapor pressure is very nearly zero. It is assumed that

the lubricant has been degassed and that only vapor cavitation is present. In

actual experimental work with submerged bearings, this is a necessary
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condition, since gaseous cavitation forms at near ambient pressure and might

prevent the occurrence of subambient pressures. The flow balance into and out
of the bearing cannot be maintained in the absence of subambient pressures.
Within the cavitated region, a zero pressure gradient is assumed. In order to
determine the load carrying capacity of the bearing under the prescribed
motion, the flow equations are solved for the pressure variable. It is more
convenient, however, to introduce another dependent variablie, ©, which has a
dual interpretation regarding the full film region and the cavitated region.
In the full film (8 > 1.0), 6 1is the ratio p/pc, which represents the ratio
of film mass content to the mass content that would exist at the cavitation
pressure pe. In the cavitated region (8 < 1.0), 6 represents the mass
ccntent that exists in the form of liquid striations. Pressure and density
are related through the bulk modulus, $, such that (pdp/3p) = B. A switching
function (g(@)) automatically eliminates the pressure term at cavitated points

of the flow. That is,

"

Uncavitated point ® > 1.0: g

Cavitated point (6 < 1.0): g

t
o

THE GOVERNING EQUATION AND DIFFERENCING SCHEME
The Reynold's lubrication equation written in terms of the fractional film

coentent, the switch function, and the bulk modulus becomes

5 3
a;im . (g) o 3oh) = T o (%}gm)ﬁe

Note that the right-nand side, the pressure induced flow, completely

disappears in the cavitated region where the switch function becomes zero. The
finite difference equattons are obtained using a control volume approach as was
used by Brewe (2). A control volume (Fig. 2) s constructed about each nodal

point and the net change in mass flow into the cell (My,ay/2 - My_ax/2) 1S
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equated to the total increase of mass (pcBh) in the cell over a time At. The
control volume equivalent to the mass conservation equation is
aehyy  Amy  Am,
pc<—5¥__ T ax Az
In the full film region (all g = 1), both the convective and pressure
terms are central differenced, appropriate for the parabolic system. In the
fully cavitated region (all g = 0), the pressure terms are eliminated and the
convective terms are upwind differenced, ©® accounting for the mass transport.
The combination of switching terms at the cavitation boundary automatically

sets well posed boundary conditions between the two systems. The resulting Am

terms from the control volume analysis are

(an,) = ol3) %h-1<] - a)ey - (1 - 90)8g ¢ 3 [a4n (2 - 9)

conv

ooy -2+ 9y) - 91“190]§

CII . (4 PR CRE) Y GRS AT R
LR CEE ‘)]%

An Euler implicit time differencing scheme is used for stability purposes,
giving:

8h - ©*h*
At =5 Ax "o Bz

where 6*h* signifies time t - 1.

It should be noted that all terms on the right-hand side of this eguation
are evaluated at time t and are therefore unknown. Along the axial
poundaries, t.e., along the edge of the bearing, the boundary condition is

that of atmospheric pressure. The circumferential direction has wrap around
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boundary conditions. The problem and boundary conditions are described in more
detail in (2).
THE MULTIGRID METHOD

Analysis of the Single Grid and the Residual Function

The iterative solution of a set of equations on a single grid generally
has rapid convergence over the first few sweeps, but very slow convergence over
most of the process. By examining the solution process, the reasons for this
become clear. Assume the following continuous differential equation,

L{e(x)} = F(x); with suitable boundary conditions
for which the discretized set of equations on one grid take the form
Lk{ek} = Fk M

In the present notation, k represents the particular grid size used, LK
represents the differencing scheme acting on 6, and © 1is the exact solution
of the differenced equations.

Let 5 te the present approximation to the exact solution 8. By
substituting 5 fnto the differenced equations, the following is obtained.

Fk = k- Lk(ok} 2)
where fK is referred to as the “"residual function." The residual function
is a means of analyzing the error left in the present approximation.

A Fourier analysis of fK breaks the error into its high- and low-
frequency components. High frequency is defined as wavelength less than or
equal to four times the grid spacing. After a few relaxation sweeps, e.g.,
Gauss-Seidel, these high-frequency components are smoothed out, due to the fact
that they are locally corrected. Once the error is all low frequency, the

smoothing rate drops drastically. The grid spacing is too fine to efficiently

smooth these low-frequency terms Brandt (9).
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The Roles of High- and Low-Frequency Error Smoothing

The basic thrust of nultigrid is to utilize coarser grids to handle these
low-frequency error terms. As long as the residual function, i.e., the error,
is well represented on a particular grid, that grid can quickly smooth its own
"high-frequency" terms and send an appropriate correction back to the finer
grid. By utilizing coarser and coarser grigs, all of the low frequency terms
are treated similarly. Besides their ability to efficiently deal with low-
frequency terms, coarse grids also have fewer nodal points to sweep through,
making the coarse grid sweeps very cheap.

Whereas moving to coarser grids smooths the low-frequency error, fine grid
updates during the multigrid process have value in improving the accuracy of
the present solution. The role of relaxation on the finer grid is to resoive
its own high-frequency components as well as smooth the high-frequency error
which is produced by interpolation from the coarser grid.

Coarse Grid Representation

The fine grid problem itself, i.e., Lk{ek} = FK, is not what is really
peing represented on the coarse grid k-1. The actual purpose of the coarse

grid is to solve for a correction value, et"

as a function of the amount of residual .rror that is left in the present

approximation on the fine grid, i.e., fK.

For a nonlinear problem, the full approximation storage (FAS) mode must be

uysed. This method stores the entire value of ék'] on the coarse grid k-1
instead of just the correction value et". If used on a linear problem, the
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equations reduce to those for the linear mode Brandt (9). The existence of
nonlinearities in the convective mass flow contribution necessitates the use

of the FAS mode. Using FAS, the coarse grid problem becomes

é?E}tial = IE_]<5K>

where It"] is the interpolation operator from the fine to the coarse grid.

Also,

k-1 _ ke . -1 zk-
PO (R 8 - T

keTgh-y L pke] (3
ok-1 L gkl | kel

C Initial

Using the interpolation operator It_], f.e., from the coarse to the fine

grid, we obtain

=k K/ k-1
8y = g Ik_]<ec ) )

-1 K

The fact that the coarse grid is solving for et as a function of f
f‘

has two important consequences. The first is that K must be well represented
on the coarse grid in order that et‘] is an accurate correction value.

K

Therefore, care must be taken that f~ s well smoothed on the fine grid before

transferring it to the coarse grid.

The second consequence ts that it is not necessary that the coarse grid

differencing scheme, . {5k']
sCcheme LK {5k}. This can be seen from the following ccnsideration, i.e., the

}, exactly match the fine grid differencing
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concept of solving for a correction value on the coarse grid arises because

[ k=1, k=T, K-1,~xk-1 ] should [ K. k K zk ]
{L e '} - L {67 '} represent L {67} - L {87}].
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K. [t can be shown that the multigrid equations follow from this basic
QI
::j concept. Now considering the RHS, oK is unknown, although we can use the
l. _',‘
{ B fact that LK{eK} = FK. Therefore,
'l.' u'
oy K K,k K . .
- RHS = [F~ - L7{®"}] = f = Residual function.
‘ -
N
- From the definition of 85, and the fact that L“”' is a linear operator,
-
nr- the LHS can be written
- ').:\
-..':‘

-
A

-,

The full equation then becomes the standard linear multigrid equation
k-1,.Kk=-17 k-1< k>
L {GC }.IK f

which can then be adapted to the nonlinear form expressed in E£q. (3).
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AN Therefore, the terms which must closely represent each other are the

.. obracketed terms, not the individual components within. Thus there is some

a flexibility in creating L* '@ '}, Especially if the problem contains

,.:j rapidly changing spatial coefficients, the coarse grid differencing scheme will
5 ?‘ nave to be a modified version of the fine grid scheme.

= Multigrid Cycle

,;E Various multigrid cycles can be used. When developing a multigrid code,
;EE it is best to use a prescribed cycle so that the results obtained by testing
i;? different relaxation and interpolation schemes can be easily compared. One

Gis example of this type is the V-cycle. One V-cycle consists cf the following:
L;;f 4 predefined number . ¢ sweeps on each grid in descending order of fineness

';‘ until the coarsest grid is reached; iterating the coarsest grid problem to

:i convergence; and a predefined number of sweeps on each grid in ascending order.
l;s The goal in multigrid is to obtain an order of magnitude error reduction per
_.' Ccycie. Once tne nest refaxation and interpolation schemes for the problem have
=
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been determined, the adaptive multigrid method can be used. This is generally
more efficient than the prescribed cycle method. The adaptive algorithm stays
on a particular grid until convergence on that grid has siowed to a defined
"slow" rate, at which time it automatically moves to the next coarser grid.
Whenever it converges to the set tolerance at a particular grid, it moves back
up to the next finer grid.

Determination of Smoothness Between Grids

The process of determining smoothness between grids is described using FAS

and the adaptive multigrid algorithm. Let M denote the finest grid.

After each relaxation on grid M, the program decides whether to stay on
the present grid or move to a coarser one. For simplicity sake, this is often
done by measuring the rate of convergence and determining a cutoff rate, i.e.,
if convergence is “slow," the program will move to a coarser grid (see
Fig. 3(a) for a schematic of the general probiem). This method infers that
slow ronvergence signifies a smoothed residual function. It assumes that the
presence of high-frequency term¢ will show up in a rapidly decreasing global

ervor term, where

2
global error = } <e . -6, . )
1'Jold 1‘Jnew

1]

This is not a bad assumption if there are no local areas containing
~apidly changing spatial coefficients. Problems may occur if local regions of
nigh-frequency residuals exist within a globally smooth dcmain. The global
error term may not be affected by the high-frequency errors and will
interpolate the solution to the coarser grid, where the residual error of the

tocd!l region will not be well represented. Some other method of determining
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the smoothness of this local area is needed in such a case. Additional sweeps
over the fine grid, or parts of the fine grid, are then needed to smooth the
. error locally.
Assuming that the residuais have been sufficiently smoothed on the fine
grid k, the problem moves to grid k-1 and retaxes Eq. (3). The program
either returns to the fine grid if the solution is converged, or goes to a
coarser grid if the convergence 1s slow and the residuals are smooth. When
the coarsest grid is reached, a converged solution is obtained by continued
relaxation or by direct solution. MWhen a converged solution is obtained on a
grid k-1, the solution is updated on grid k wusing Eq. (4).
APPLICATION OF MULTIGRID

The use of implicit time differencing necessitates the solution of an

NIxMJ set of equations at each time step. In this study, no attempt is made
to use multigrid across physical time. Multigrid is used to facilitate the
iterative solution of the NIxMJ set of equations within each time step.

The fine grid (M) equations take the form LM{&M} = FM, where M{eM)
represents the differencing scheme of © described earlier. The forcing
function, FM, represents terms from the previous time step which evolve from

the implicit time differencing scheme.

The coarse grid representation as derived above are used to implement the
miltigrid procedure. A flow schematic of the procedure used is shown in
Fig. 3(h).

Full weighting is used for the fine-to-coarse grid interpulations, taking
into account all nine fine grid points associated with the coarse grid

equivalent point,
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+ 26
Both linear and third degree polynomial interpolation from coarse to fine grid
were tested, and several different relaxation schemes were tried.

The Switch Function

The values of the switching function, g(8), are not ailowed to change

during a muitigrid solution process. Attempts to let them vary with the

solution led to major instabilities. The g values at the new time step, gtf,

t-1

conv” Using these

are first determined from the previous solution, i.e., ©

values at time step t, the fine grid equations are relaxed a certain number of

t

approx’ These

times, after which the g values are updated to the present ©
g values are then used throughout the multigrid solution.
RESULTS

Excellent results were obtained over the time steps prior to the start of
cavitation, both in terms of comparison with a single grid iterative solution
and comparison with Brewe's direct solution. These results are summarized in
Table II.

Comparisons with single grid iteration are done on the hasis of work units
(WYY used, where 1 WU is equivalent to 1 relaxation sweep over the finest grid.
Letting M, i.e., total number of grids, represent the finest grid and k a
coarser grid, numbered in decreasing order respectively, the equivalent WU
used by grid k fis

WUK = 4(k-M)

The following results were obtained for the test case having a maximum

eccentricity of 0.8 and a minimum eccentricity of 0.1 (see Table I). This is
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D,
i } one of the more difficult cases to run, since very high pressures and large
::: pressure gradients are induced near the minimum film thickness. The pressure
"
(_ . gradients and the bubble shape change relatively rapidly with time.

“w

w

:j In all of the trials, a system of three grids was used. The addition of

o
A
‘zg a fourth coarsest grid had a negligible effect. For comparison purposes, a

! single grid solution using Gauss-Seidel relaxation on a 96- by 24-point mesh
; D was run (96 points circumferentially and 24 points axially). The 96- by

A

.iz 24-point mesh ensures a grid aspect ratio (AR = Ax/Az) of 1. It required about

300 WU per time step.

h "-3.
::; Gauss-Seidel (G-S) and Jacobi (J) relaxation schemes with no
[~

:ﬁ overrelaxation were found to be the most effective smoothers for this problem.
,?‘ Circumferential line relaxation, i.e., solving simultaneously each line of

:} points in the circumferential direction, is an effective smoother, but is not
ﬂ; worth the substantially greater computational time needed to solve for the

periodic boundary conditions, which introduce corner terms to the tridiagonal

Eﬁ matrix. Line relaxation is used as a local smoother, however, when cavitation
‘52 develops. Both the G-S and J relax points in the direction of the flow,

. i.e., the circumferential direction, sweeping across the axial direction.

43 Sweeping across the circumferential direction is not very effective, nor is a
;:E combination of axial and circumferential sweeps. A red-black scheme is also
hd not very effective.

b

> The difference between the G-S and the J schemes when used in the

N

Y multigrid process i< extremely small. J relaxation uses an average of 0.5 WU
A

L@ more than G-S per time step. The reason seems to be that the J multigrid
g

';f uses the same number of fine and medium grid sweeps as does the G-S per

v

'f solution and makes up for its lower efficiency by using a greater number of

e the coarsest grid sweeps, which are very cheap. The advantage of using J
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when working with a parallel processing computer is that the inner loop is
vectorizable, since all points in a line are substituted at the end of the line
instead of point by point. Using the CRAY XMP one ] svweep takes one-tenth
the CPU time of a G-S sweep.

A muitigrid solution using G-S relaxation along the direction of flow
and a linear interpolation scheme from the coarse to fine grid was first
tested. The solution on a 48- by 48-point fine mesh (AR = 3.1) required an
average of 24 WU per time step. The solution on the 96- by 24-point mesh
required an average of 14 WU per time step, which is nearly 22 times faster
than the single grid solution.

A third degree polynomial interpolation scheme from coarse to fine grid
was also tested. Using the same 96- by 24-point mesh and G-S, this scheme
reduces the work per time step to an average of 7.5 WU, half the work used by
the linear scheme. Also, the third degree polynomial routine takes virtuaily
the same amount of CPU time as the linear routine on the CRAY XMP, making it
highly worthwhile. This scheme used approximately 1/40 of the work used by
single grid iteration.

The adaptive multigrid cycle was used to obtain the above results. To
determine the efficiency, however, a V-cycle was also run. Each cycle reduces
the error by nearly an order of magnitude.

The results also compare well with Brewe's direct numerical solution, both
in accuracy and CPU time. Also, load capacities were compared at various time
steps. The greatest difference found between the load capacity values is two
parts in 10 000. Both the direct and the multigrid codes are vectorized to the
highest efficiency. Both were run on the CRAY XMP for 5000 time steps of

uncavitated flow. The direct solution took 1086 sec CPU, while the multigrid

code took 57 sec CPU, about 1/20 the CPU time of the direct solution.
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The presence of cavitated points in the flow, 1.e., the presence of an
area having g = 0 bounded by points having g = 1, requires a more involved
approach. On a single grid, the algorithm handles the cavitation as
efficiently as it would an uncavitated configuration. Problems begin to occur
when coarser grids are added.

Initially, the coarse grid cavitation area was determined by injecting
corresponding fine grid g's directly to the coarse grid points. Figure 4
shows graphs of the residual function at similar states in the solution for
both an uncavitated and a cavitated configuration using this scheme. These
graphs were obtained with no extra smoothing around the cavitated area. As can
be seen, high-frequency local-error terms exist around the cavitated boundary,
whereas the uncavitated region has already been well smoothed. If the program
is allowed to continue from this point, it moves to the coarser grid, where the
cavitated boundary residuals are not well represented. Depending on how
unsmooth the boundary residuals are, V-cycle results range from 40-percent
error reduction per cycle to a slight divergence of error terms per cycle.

Extra local smoothing helps immensely, as would be expected. The best
results are obtained by using a local circumferential line relaxation scheme
over the cavitated region and boundary points. This scheme is a very powerful
smoother and is also expedient, since, as a local smoother, it reduces to a
purely tridiagonal matrix of a relatively small number of points.

The problem still remains of deciding how many local smoothing sweeps is
"enough,'" or whether any are necessary at all. If the number of sweeps is set
such that the most difficult cavitation configurations converge efficiently,
then configurations having smoother initial residuals become much less

efficient. Some type of smoothness indicator is necessary. The present
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routine takes the fine grid residual function, fK, and interpolates it down to
grid k-1 using the same full weighting as in an actual grid switch. The
coarse grid values are then interpolated linearly back up to the fine grid k.
These then represent "smooth" fine grid residuals and are compared with the
actual residuals. If any of the actual terms fall outside of an envelope
placed around the smooth term, the problem is deemed unsmooth and local
smoothing is done.

The ahove procedure does much to stabilize the solution process, resulting
in an average usage of 40 WU per time step solution. For the g-injection
mcdel, however, order of magnitude error reduction per cycie is not usually
obtained, and certain cavitation configurations do occur which are very
difficult or impossible to solve.

As mentioned earlier, the coarse-grid operator LK-1 need not be the same
as the fine-qrid operator LM. Because of this fact, some latitude in handling
the values of the g coefficient in the coarse grid equations is permissible.
This led to a coarse-grid determination scheme for the g values that not only
circumvented occurrences of instability due to injection but had a major
beneficial effect on the solution. Recall, the g values on the finest grid
are determined by the value of © at each nodal point, i.e., g has a value of
1 at full film points and a value of 0 at cavitated points. It was found that
stabtlity of the solution across all possible cavitation configurations can be
obtained by defining a parameter FG as:

FG = [gﬁ—l,j-l + g?—l,j + 9§-1,j+1 + 9?,3-1 * 9?,j + 9§,j+1 + 9§+1,j—1
*9ia,5 ¢t 9?+1,j+1]
K-1

If FG = 0; g =0
If FG=0; g
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‘"ié In other words, a fine grid point must have a gk value of 0 and must be
{EES surrounded (all eight points) by points having gk = 0 in order for the
f N - corresponding coarse grid point to be set to gk" = 0. Other schemes were
,:SS found to work but were not as efficient. This scheme resulted in an average of
1;;5 20 WU per time step, the number of WU ranging from 11 to 35 WU. The solution
:‘; process remains stable throughout bubble formation and bubble collapse. The
'E% time steps which required the most work units occurred at the very beginning of
523 bubble formation, when there were very few cavitated points, and during bubble
ri\ collapse. MWhile the bubble is collapsing, it is also experiencing its greatest
EES amount of movement downstream, so it might be this movement rather than the
;ﬁ% process of collapse which requires more solution time.
.;{ A V-cycle analysis shows that better than an order of magnitude error
;Eéf reduction per cycle is obtained, though at the cost of extra smoothing on the
: finer grids.
(-‘ The results for cavitated flow also compare well with Brewe's direct
ZE E solution. The same bubble shape, motion, and duration are obtained from both
;ﬁ% programs. Figure 5 contains computed pressure distributions at various time
‘;i_ steps. The cavitated area is indicated by the flat area of zero pressure
éij gradient. Comparison of load capacity terms shows a maximum difference of five
;gf parts in 10 000 in the cavitated region. MWhen run on the CRAY XMP, the direct
:: solution of S000 time steps of cavitated flow again takes 1086 sec CPU. The
'S; multigrid solution of 5000 time steps of cavitated flow takes 150 sec CPU,
';é ) approximately one-eighth the CPU taken by the direct solution. Even though the
;E; cavitated configurations take more CPU than do the uncavitated configurations,
EZE the multigrid solution still represents a very significant savings over the
3}5 direct method.
%
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In his paper on the direct ADI solution of the Elrod algorithm, Brewe (2)

L5555 58 @ 2% '1
;
[/
b
P
[,

states that his solution uses two to three times the computational time used

‘,’ by an iterative solution of a nonconservative film model using pseudo-Gumbel

PJ.)

Y boundary conditions. This nonconservative film model is only suited to steady-
i state conditions, but is often used by industry. Thus, the multigrid solution

- 55D

of the tlrod algorithm requires about one-tenth to one-third the computational

o

time (for uncavitated and cavitaced flow respectively) of the nonconservative

film model solution, while still retaining the more realistic representation of

” the flow.

Cal

- CONCLUSION
oS

o A multigrid iterative technique is used in the solution of the Eirod
®

3 algorithm for the case of a dynamically loaded journal bearing undergoing
s

A cavitation. This solution is compared both to a single grid iterative solution

) -“

: -"

in terms of work used, and to a direct ADI solution in terms of computer time

g P

2 required. Excellent results are obtained both prior to and during cavitation,
:iﬁ although the presence of cavitation does introduce difficulties in the solution
fti process.

;\; The best resulits are obtained using the following: a grid aspect ratio of
:E: i; full weighting interpoliation from the fine grid to the coarse grid; third
:E: degree polynomial interpolation from the coarse grid to the fine grid; either

;% Gauss-Seidel or Jacobi relaxation with no overrelaxation. Implementing these
‘E; techniques, the solution at time steps prior to cavitation uses 1/40 the amount
:fz of work used by a single grid iterative Gauss-Seidel solution and 1/20 the
‘:; computer time used by the direct ADI solution. During cavitation, the
;EE multigrid solution uses 1/15 the amount of work used by a single grid G-S
; solution and one-eighth the computation time used by the direct ADI solution.
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iﬁ: Based on the results stated in this paper, it is evident that the solution
;@ of the Elrod algorithm using multigrid techniques provides an extremely viable
; : method to industry for the solution of journal bearing problems.
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: AR, m . . 5.0x10~4
o) R, m . 0.0425
"y L/D . B N
':_:‘ € . . . . . 0.1 to 0.8
i:{ Wg , rad/s . -19.5
e wg, rad/s . .=92.7

=T R, N/m2 . . 1.72x109
A u, N-s/mé . .. 0.066
o g, N/ml 1.0133x102
A pc, N/m? 0.0
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TABLE II. - RESULTS

(a) Prior to cavitation, work units (WU3) used per time step

solution.
Number Aspect Type of Type of Average
of ratio, relaxation interpolation WU
grids AR K to k+l
| 1 R 300
3 3.1 Linear 24
1 Linear 14
1 Third-degree 7.5
polynomial
1 J Third-degree 8.0
polynomial

3] WU = the equivalent to one relaxation sweep over a 96- by
24- (or a 48- by 48-) point grid.

(b) Prior to cavitation, CPU time used for
solution of 500 time steps on Cray XMP.

Type of solution CPU
time,
sec

Direct - ADI (96- by 24-point mesh) | 1086

Multigrid - three grids (Jacobi 57
retaxation, third-degree poly-
nomial interpclation from coarse
to fine, 96- by 24-point mesh)

(c) During cavitattion

T W W W WY

Number Type of g-mode1b Average Cray CPU Stability of
of solution WU per time for solution
grids time step 5000 time process
solution steps,
sec
1 G-S g = fcn(e) 300 ——— Stable
3 G-S or I Injection |  ---~- _—— Unstable
no L¢
G-S or J Injection 40 ——— Unstable
and L
G-S or J gl 40 to 50 ——— Stable
and L
G-S or J gsur 20 150
and L
1 Direct (ADD) g = fendg)y | --—-- 1086
1 Nonconformal Stationary |  --—-- N500
film modi- cavita-
[ fication tiocn area
bG-models:
[njection: g” = fcn(@ = 1 or 0; g™ . corresponding gk+!
gl: gM = fendy; alt ghk<M oy

gsur: gM = fenden;
surrounded by g

CL = local circumferential

RO BT o OV
‘(‘\ \ ..I "- .' '| l..'i

= 0 points.

P
N g

S that 0.\' :

g™ - 0 only if corresponding gK+1 = 0 and is
ka+l

line relaxation around cavitated area.
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Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves
mass wathin the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap.
The maxed nature of the equations (parabolic 1. the full film zone and hyperbelic in the cavitated zone) coupled
with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis
is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy
and reduction of computational time.
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